罗素悖论理发师
1、1874年,德国数学家康托尔创立了集合论,而且很快渗透到大部分数学分支,并成为它们的基础。但到了19世纪末,集合论中接连出现了一些自相矛盾的结果,特别是1902年罗素悖论的提出,使数学的基础动摇了,这就是所谓的第三次“数学危机”。(罗素悖论理发师)。
2、它似乎是可以早些到来的,因为历史上的数学悖论早已发现且不计其数。例如,古希腊时代欧布利德或古罗马哲学家、政治家西塞罗(公元前106~前43)的“谷堆悖论”,德国哲学家黑格尔的“秃头悖论”,意大利伽利略的“自然数等于完全平方数悖论”,德国数学家施瓦兹(1843~1921)在1880年提出的“施瓦兹悖论”。这些悖论没有能引起“危机”的原因在于,数学家们对自己不够自信,因为类似“悖论”这类问题,在数学中比比皆是,不值得一提。没有引起“危机”的第二个原因在于,其中有的悖论已被“克服”,既已克服,便不存在“危机”。例如古希腊数学家芝诺(约公元前496~前429)提出的四个悖论——其一是众所周知的古希腊神话中善跑的英雄阿基里斯永远追不上乌龟的悖论,在19世纪已经得到解决;有的则未能引起足够的注意。因此在20世纪之前,这一“危机”没有到来。(罗素悖论理发师)。
3、讨论罗素悖论产生的原因时一种观点认为,集合论中没有时间、没有先后,数学可以不存在于现实空间,罗素悖论可以存在。另一种观点认为所有思维过程都在现实空间进行,“所有集合的集合”也是在现实空间产生。事件在现实空间的属性是事件的全部属性。如果“所有集合的集合”存在于现实空间,那么罗素悖论不是悖论。
4、当然,这只是罗素悖论的通俗说法。罗素悖论是关于数学中集合论的一个矛盾而提出的。
5、这样,在19世纪后半叶,数学家们开始陶醉了:数学基础已牢固无比,数学的严密性已达到。不过,几乎同时,一些事也使数学家们不那么“陶醉”:1897年,意大利数学家布拉利·福蒂(1861~1931)提出了以他名字命名的悖论;1899年,康托也提出“最大基数悖论”和“最大序数悖论”。这些集合论中的悖论也没有得到解决,一些人心中也产生了困惑。
6、1931年,奥地利数学家哥德尔(1906~1972)发表了《论“数学原理”和有关体系的形式不可判定命题》的论文,给出了两个“不完备定理”,这是“数学和逻辑基础方面伟大的划时代的贡献”。哥德尔第一定理推翻了数学的所有领域能被完全公理化这一强烈的信念;而第二定理则摧毁了沿着希尔伯特等人设想过的路线证明数学内部相容性的全部希望。从此,前述三大数学流派为克服“危机”、寻找可靠数学基础的努力全部化为泡影!于是,数学家们再次陷入困惑,人们在困惑中沿着不完备定理这一指路明灯进入新一轮的思考和探索。
7、A={3}是一个集合,里面有三个元素,分别是3;
8、一张明信片的一面写有一句话:“本明信片背面的那句话是真的。”
9、解决这一悖论主要有两种选择,ZF公理系统和NBG公理系统。策梅罗在自己这一原则基础上提出第一个公理化集合论体系,后来这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。这一公理系统在通过弗兰克尔的改进后被称为ZF公理系统。
10、所以正整数集合和正偶数集合元素个数是一样多的。
11、翻过明信片,只见背面的那句话是:“本明信片正面的那句话是假的。”
12、文兰(1946-),1969年毕业于北京大学数学力学系,1981年在北京大学获得硕士学位,导师为廖山涛先生。1986年在美国西北大学获得博士学位,导师为R.Williams教授。1988-1990年在北京大学从事博士后研究,后留校任教。文兰主要从事微分动力系统方面的研究,在不可逆系统C1封闭引理、C1连接引理、流的稳定性猜测、星号流问题、Palis稠密性猜测等动力系统的若干基本问题上做出重要贡献;1997年获陈省身数学奖,1999年当选为中国科学院院士,2005年当选为第三世界科学院院士,2011年获华罗庚数学奖。
13、明信片悖论、理发师悖论、罗素悖论中事件的前提是可以接受的前提。之前对这四个悖论题进行的推理是没有在现实空间的时间关系中进行的推理,是与现实不符的推理,是不可接受的推理。
14、这是一个矛盾推理:如果理发师不给自己理发,他就属于招牌上的那一类人。有言在先,他应该给自己理发。反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发。
15、所有不以自己为元素的集合组成的集合是“不以自己为元素的集合”还是“以自己为元素的集合”?判断这个问题时出现悖论。
16、当我们创造出“万能的上帝自己举不起来的石头”这个概念的同时,就已经自相矛盾了,既然存在“万能”,又怎么可能有“不能”呢?
17、自然语言从产生直到发展至今,其目的很简单,就是满足人与人之间的沟通,也就是说明白和听明白。
18、如果想找的话,这种问题无穷无尽,没有不是苹果的苹果?
19、清华大学物理系复系40年以来凝聚态物理学科的发展
20、要是他给自己理发,那么他就违反了自己的规定,因为按规定,他不应该为自己理发;要是他不给自己理发,他也违反了自己的规定,因为按规定,他一定得给自己不理发的人理发,所以他也得给自己理发。理发师犯难了:他不论怎么做都“自己打自己的耳光”。
21、元素与集合的关系有“属于”和“不属于”两种,比如“1”这个元素,它是集合A的元素,但是不是集合B的元素,写作
22、未刮脸转换为已刮脸的标准可以人为定义,例如,定义只刮下一根胡须为已刮脸(或刮下最后一根胡须为刮过脸或……)。推理,如果他没有给自己刮过一根胡须,那么,他属于“自己不刮脸”的那一类村民,按规定,他必须给自己刮脸。在他只刮下自己一根胡须“后”,他才属于“自己刮脸”的那一类村民(在他只刮下自己一根胡须“前”不属于),按规定从此后理发师再不能刮自己的任何一根胡须了。理发师从未刮脸转换到已刮脸的过程中没有违反店规,理发师的店规可以执行。
23、那如果咱们非要没事找事的话,这种所谓的“悖论”也多了去了。
24、但对这个看似合理的问题的回答却会陷入两难境地。如果s属于S,根据S的定义,s就不属于S;反之,如果s不属于S,同样根据定义,s就属于S。无论如何都是矛盾的。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。
25、答案是分工协作,稍微复杂点的协作就需要沟通,这就是猴子们演化出语言能力的原因。
26、例如上帝悖论,既然上帝是万能的,那么他能不能创造一块自己举不动石头?
27、一种情况是明信片两面的两个判断句在现实空间同时存在,这样两个判断在作断定之前就都没有对象,这样明信片两面的两个判断都是无效判断,不能产生悖论。
28、当然了,理发师悖论有他的特殊性,不是他本身有什么特殊,而是他被罗素进一步抽象成为一般形式的罗素悖论,一个不包含自身的集合的集合,到底是否包含自身?
29、1901年6月,英国数学家、哲学家罗素(1872~1970)发现了后人以他的名字命名的“罗素悖论”,这是集合论中的一个悖论,所以又叫“集合悖论”。它的基本内容是:如果把所有集合分为甲、乙两类,甲类可以把自身作为自己的元素,乙类不可以把自身作为自己的元素;那么,所有的乙类集合的集合是甲类还是乙类呢?如果说所有的乙类集合的集合属于甲类,由于甲类可以把自身作为自己的元素,那么乙类集合的集合应属于乙类。如果说所有的乙类集合的集合属于乙类,那么它显然可以纳入所有的乙类集合的集合之中,这样它又符合甲类要求而属于甲类了。由此看来,所有的乙类集合的集合既是甲类又非甲类,既是乙类又非乙类,于是造成了不可克服的逻辑矛盾。1918年,罗素把这个较为高深的集合论中的悖论通俗地解释为前述“理发师悖论”,所以许多文献把这两个悖论相提并论,其本质都是,使逻辑陷入一种无法摆脱的“怪圈”。
30、在一个判断句中如果其断定的对象还是一个判断,那么可从这个还是判断的对象中找出在此判断中比断定存在时间更前的对象,按时间顺序推理分析各个判断是否自洽,推理分析过程有开始有结束不会出现循环。但是如果在寻找前面对象的过程中把后面时间出现的对象(误)当作是在前面时间出现的对象,把明信片后面时间出现的语句当作在前面时间出现的对象,就会使推理者在寻找前面对象的过程中不知不觉又进入到时间轴上后面时间的判断中,使推理进入循环。
31、因为人家就是那么定义的,咱非要问两个不同的定义是否可以相同,这不是找抽吗?
32、在二十世纪初,数学界笼罩在一片喜悦祥和的气氛之中。法国大数学家彭加莱在1900年的国际数学家大会上公开宣称:数学的严格性,现在看来可以说是实现了。他说这句话是有原因的,那就是德国数学家康托尔所创立的集合论。
33、但是,招牌上说明他不给这类人理发,因此他不能自己理。
34、清华大学物理系复系40年以来原子分子光物理学科的发展
35、清华大学物理系复系40年以来粒子、核与天体物理方向的发展
36、如果由另外一个人给他理发,他就是不给自己理发的人。但是,招牌上明明说他要给所有不自己理发的男人理发,因此,他应该自己理。由此可见,不管作怎样的推论,理发师所说的话总是自相矛盾的。
37、在逻辑学中,如果承认某一命题是真的,但它又是假的;如果承认它是假的,但它又是真的。这样的命题叫“悖论”或“佯谬”。上面这个故事被称为“理发师悖论”。
38、有的猴子学会了使用工具,就唠唠叨叨告诉其他猴子使用方法。
39、如果不能,那么他就不是全能的;如果能,那么他举不起这块石头,所以也不是全能的。
40、这张明信片上每一面都是一个判断句,并且每一面的判断都把另一面的句子当作被断定的对象,就是每一个判断中的对象还是一个判断,从现实空间分析这张明信片,这张明信片每一面上的判断都把另一面的语句设置为出现时间在前;本面的判断语句出现时间在后。
41、理发师突然发现自己非常尴尬。因为他如果回答给自己刮胡子,他就是第一类人,按照他的规矩就不应该给自己刮胡子;而如果他不给自己刮胡子,他就是第二类人,按照规矩他又应该给自己刮胡子。
42、但是集合的元素必须是确定的。所以有些概念不能构成集合,例如”美女的集合”就是一种错误的说法,因为一个人美不美会因为其他人的感受而异,不具有确定性。
43、从前有一个村子,村子里只有一名理发师。这个理发师有个怪脾气,他的理发店门口立了一个牌子,上面写着:我给且只给自己不刮胡子的人刮胡子。
44、1874年,德国康托在《克列尔杂志》上发表了《论所有实代数数集合的一个性质》的论文,它标志着集合论的诞生。集合论的创立,颠倒了许多前人的想法,与传统数学观念相冲突,因此一开始就遭到反对者的指责。但在1897年第一次国际数学家大会在瑞士苏黎世召开时,德国数学家赫尔维茨(1859~1919)和法国数学家阿达马(1865~1963)就充分肯定了康托的理论在分析学中的重要地位,最终导致集合论被公认。此外,“皮亚诺算术公理系统”的出现,自然数理论被归结为一组不加定义的概念和几条有关的公理,算术理论公理化了。这样,数学的基础就放在集合论之上了。
45、你说这么一群战五渣是怎么在丛林里面生存下来的?
46、正常情况下,在判断的对象还是判断的连续判断中,前面时间的判断只断定在断定前存在的对象的属性,是时间轴上前面部分局部的判断,不涉及影响后面时间对象还未出现的判断,后面时间发生的判断是对前面对象所有属性的综合判断,与前面时间存在于对象中的判断有关,是对前面对象的总体的判断,如果把后面时间出现的判断事件当作前面时间判断中的对象,就出现了前面的判断涉及影响到后面判断的情况,使部分涉及影响到全体及自身,就是“自指”。
47、也就是说,村子里的人分为两类,第一类人会给自己刮胡子,第二类人从不给自己刮胡子。而这名理发师不给第一类人刮胡子,而只给第二类人刮胡子。